Capturing bluetooth traffic in the wild : practical systems and privacy implications
"Bluetooth wireless technology is today present in billions of smartphones, mobile devices, and portable electronics. With the prevalence of personal Bluetooth devices, a practical Bluetooth traffic sniffer is of increasing interest due to the following. First, it has been reported that a traffic sniffer is an essential, day-to-day tool for Bluetooth engineers and applications developers [4] [14]; and second, as the communication between Bluetooth devices is privacy-sensitive in nature, exploring the possibility of Bluetooth traffic sniffing in practical settings sheds lights into potential user privacy leakage. To date, sniffing Bluetooth traffic has been widely considered an extremely intricate task due to wideband spread spectrum of Bluetooth, pseudo-random frequency hopping adopted by Bluetooth at baseband, and the interference in the open 2.4 GHz band. This thesis addresses these challenges by introducing novel traffic sniffers that capture Bluetooth packets in practical environments. In particular, we present the following systems. (i) BlueEar, the first practical Bluetooth traffic sniffing system only using general, inexpensive wireless platforms. BlueEar features a novel dual-radio architecture where two inexpensive, Bluetooth-compliant radios coordinate with each other to eavesdrop on hopping subchannels in indiscoverable mode. Statistic models and lightweight machine learning tools are integrated to learn the adaptive hopping behavior of the target. Our results show that BlueEar maintains a packet capture rate higher than 90% consistently in dynamic settings. In addition, we discuss the implications of the BlueEar approach on Bluetooth LE sniffing and present a practical countermeasure that effectively reduces the packet capture rate of sniffer by 70%, which can be easily implemented on the Bluetooth master while requiring no modification to slave devices like keyboards and headsets. And (ii) BlueFunnel, the first low-power, wideband traffic sniffer that monitors Bluetooth spectrum in parallel and captures packet in realtime. BlueFunnel tackles the challenge of wideband spread spectrum based on low speed, low cost ADC (2 Msamples/sec) to subsample Bluetooth spectrum. Further, it leverages a suite of novel signal processing algorithms to demodulate Bluetooth signal in realtime. We implement BlueFunnel prototype based on USRP2 devices. Specifically, we employ two USRR2 devices, each is equipped with SBX daughterboard, to build a customized software radio platform. The customized SDR platform is interfaced to the controller, which implements the digital signal processing algorithms on a personal laptop. We evaluate the system performance based on packet capture rates in a variety of interference conditions, mainly introduce by the 802.11-based WLANs. BlueFunnel maintains good levels of packet capture rates in all settings. Further, we introduce two scenarios of attacks against Bluetooth, where BlueFunnel successfully reveals sensitive information about the target link."--Pages ii-iii.
Read
- In Collections
-
Electronic Theses & Dissertations
- Copyright Status
- In Copyright
- Material Type
-
Theses
- Authors
-
Albazrqaoe, Wahhab
- Thesis Advisors
-
Xing, Guoliang
- Committee Members
-
Enbody, Richard
Ren, Jian
Torng, Eric
- Date
- 2018
- Program of Study
-
Computer Science - Doctor of Philosophy
- Degree Level
-
Doctoral
- Language
-
English
- Pages
- xiii, 90 pages
- ISBN
-
9780355846423
035584642X
- Permalink
- https://doi.org/doi:10.25335/M5N29P90C