THE ROLE OF α-SYNUCLEIN IN CHOLINERGIC NEUROTRANSMISSION IN THE ENTERIC NERVOUS SYSTEM
Parkinson’s disease (PD) is a slowly progressive neurodegenerative disorder that is manifested by significant motor impairments that decrease the quality of life and increase mortality in our elderly population. Non-motor symptoms in PD are common in patients and occur up to 2 decades prior to the onset of motor symptoms. Gastrointestinal (GI) complications, specifically constipation, is seen in over 50% of patients with PD and can be debilitating and result in malnutrition and weight loss. There is a need to elucidate the underlying mechanisms the lead to gut dysmotility in PD. Moreover, the pathologic event that causes cell death of dopaminergic neurons within the central nervous system (CNS) is observed with the enteric nervous system (ENS) decades prior to pathology in the CNS. This pathologic event is the toxic conversion and aggregation of a presynaptic terminal protein, α-synuclein (αSyn), into Lewy bodies. αSyn plays an important functional role in various cellular processes, including but not limited to, mitochondrial, lysosomal, synaptic vesicle regulation, and protease function. Therefore, we can predict the cascade of events that occur when this protein is no longer functional. Within the ENS, acetylcholine is the primary vesicular neurotransmitter involved in smooth muscle contractions. In this work I aimed to elucidate the role of pathologic αSyn on slow colonic transit disrupting cholinergic neurotransmission. In Chapter 2, we used two mouse models of hαSyn overexpression to target ENS pathology. In Chapter 3, we used a gene knockout of αSyn to further establish a functional role for the protein in cholinergic neurotransmission. We performed immunofluorescence, fecal pellet output, whole gut transit, colonic migrating motor complexes, studied longitudinal smooth muscle contractions, and junctional potentials to put together a thorough picture connecting phenotype to circuitry within the ENS. Our findings discussed in this dissertation shed light on 1) αSyn’s role in cholinergic neurotransmission, and 2) whether αSyn is necessary for normal colonic function and motility. Overall, cholinergic neurotransmission warrants a closer inspection in the ENS in PD. Strong evidence has continued to associate αSyn pathology to cholinergic neurons. Understanding this mechanism may allow for development of therapeutics that may alleviate GI symptoms in the PD population and help focus on discovering an early biomarker in diagnosing PD.
Read
- In Collections
-
Electronic Theses & Dissertations
- Copyright Status
- In Copyright
- Material Type
-
Theses
- Thesis Advisors
-
Galligan, James J
- Committee Members
-
Gulbransen, Brain
Manfredsson, Fredric
Ganz, Julia
Xu, Hui
- Date
- 2021
- Subjects
-
Neurosciences
- Program of Study
-
Neuroscience - Doctor of Philosophy
- Degree Level
-
Doctoral
- Language
-
English
- Pages
- 117 pages
- Permalink
- https://doi.org/doi:10.25335/trw7-jr49